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Abstract—Trace links between requirements and code are
essential for many software development and maintenance
activities. Despite significant advances in traceability research,
creating links remains a human-intensive activity and sur-
prisingly little is known about how humans perform basic
tracing tasks. We investigate fundamental research questions
regarding the effort and quality of recovering traces between
requirements and code. Our paper presents two exploratory
experiments conducted with 100 subjects who recovered trace
links for two open source software systems in a controlled
environment. In the first experiment, subjects recovered trace
links between the two systems’ requirements and classes of the
implementation. In the second experiment, trace links were
established between requirements and individual methods of
the implementation. In order to assess the validity of the trace
links cast by subjects, key developers of the two software
systems participated in our research and provided benchmarks.
Our study yields surprising observations: trace capture is
surprisingly fast and can be done within minutes even for
larger classes; the quality of the captured trace links, while
good, does not improve with higher trace effort; and it is not
harder though slightly more expensive to recover the trace
links for larger, more complex classes.

Keywords-Requirements traceability, traceability effort and
quality, exploratory experiments.

I. INTRODUCTION

Requirements traceability is not a new field of research
and there is a general consensus among practitioners and re-
searchers that trace links are vital for understanding software
systems and for supporting many critical software engineer-
ing activities. For instance, trace links between requirements
and code identify where requirements are implemented. Such
links are required to determine the impact of changes to
requirements during maintenance, to perform coverage anal-
yses, or to check the consistency of arbitrary development
artifacts [1–3]. Traceability is generally considered most ben-
eficial in long-living software systems [4] when engineers are
no longer familiar with the source code [5]. Traceability is
nowadays mandated by standards and prescribed in develop-
ment methods. The existence of trace links is assumed by
many existing research approaches [6–8].

However, little is still known regarding the cost-
effectiveness of traceability between requirements and code.
In domains where system failure implies loss of life or
massive economic loss, the question on cost-effectiveness

is secondary. In such domains, trace capture is state of the
practice. However, for the vast majority of other systems, the
economic benefits are unclear and, as a result, trace capture
is rarely done in industrial practice [4]. To understand the
cost-effectiveness of traceability, the economic benefits of
using traces must outweigh the cost of trace capture and
maintenance. While studies exist that explore the economic
benefits of traces [2, 4, 7, 9–11] to the best of our knowledge
no studies have explored the cost of trace capture.

This paper aims to provide this vital missing link. There
are many factors that affect the cost of trace capture: the
degree of familiarity with a system, the level of automation
(for code understanding or trace capture), the availability of
documentation, etc. It is clearly impossible to consider all
these factors in a study. We thus focus on understanding
the ”worst case” of manual trace recovery, i.e., subjects
without system familiarity, without system documentation,
and without automated support for identifying traces for a
given system. We will show that even in this scenario trace
capture is reasonably quick with surprisingly good quality.
Our assessment allows researchers to reason about the cost-
effectiveness of traceability from a conservative point of view,
i.e., if traceability is cost-effective compared to the ”worst-
case” cost of trace capture then it can be expected that trace-
ability is cost-effective even more so under better circum-
stances! This work can thus provide a foundation for assessing
the economic benefits of traceability for practitioners and
researchers alike; for assessing the savings of trace capture
automation or the expected cost of their manual overheads;
for assessing whether or not a particular use of traces is cost-
effective by comparing the savings with cost; and for better
understanding the economics of trace capture.

The worst-case situation of recovering trace links between
requirements and code is assessed through two exploratory
experiments conducted in a controlled environment. The sub-
jects chosen for the experiments were master-level computer
science students of Vienna University of Technology and
Johannes Kepler University Linz. About half of them had
two years or more of industrial experience in software de-
velopment and the skills and experience of this group is
certainly representative of industrial settings. The other half
of the subjects had less than two years of industrial experience
and the skills of this group are representative of new people
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joining companies. None of subjects had a-priori knowledge
of the systems used. Our study thus aims at identifying to what
degree experienced and inexperienced subjects unfamiliar
with the code can recover correct traces. This problem is
highly relevant in industry because engineers may understand
the bigger picture of the source code and its domain [5, 10]
but they often do not understand the purpose of individual
classes. As a benchmark for evaluating the subjects’ work,
we relied on two key developers who wrote the software
systems used in the studies and were thus highly familiar
with their implementation. Their data allowed us to assess the
correctness of the trace links cast by the subjects.

Our study shows that subjects needed on average only 1-2
minutes for recovering the trace links for a class. While the
cost of trace recovery increased slightly with code size, we
did not find a correlation between code size and the quality
of the trace links recovered. Almost all subjects, although
unfamiliar with the systems, managed to recover mostly cor-
rect traceability (89% on average). However, for the 201,480
traces necessary to completely describe requirements-to-
method traces for the first open source system used, 15%
incorrectness still amounts to more than 30,000 errors! More
experienced subjects did perform slightly better than less
experienced subjects but at the expense of higher effort. Our
assumption that subjects who investigated a class longer than
others would also recover better quality traces could not
be confirmed. We found that requirements-to-method traces
were 3-6 times more costly to recover than requirements-
to-class traces. Surprisingly, however, the correctness of the
finer grained method traces was not superior to that of class
traces (note that both class and method subjects looked at
the exact same code). The recovered traces were more likely
correct if the recovery could be done fast. This suggests
that subjects quickly had the correct intuition about a class’
traceability. While the effort of trace recovery correlated with
class size no correlation could be observed between size and
correctness. These findings are important for practitioners for
better understanding the worst-case cost and quality of trace
capture. The findings are also important for researchers to
better quantify the cost and benefit of research approaches that
rely on the existence of trace links.

II. RELATED WORK

Trace recovery represents a massive re-engineering effort
not unlike architecture recovery. To date, the research commu-
nity has focused largely on automated approaches to recover
trace links [12–16]. Despite successes in this field, adequate
automation has never been achieved and trace recovery re-
mains a human-intensive activity. Indeed, researchers have
pointed out that it is risky to neglect humans in the traceability
loop [17]. Nevertheless, only little is known on how people
without system knowledge recover trace links and no data is
available on the effort, quality, and complexity of basic trace
recovery tasks. Although trace recovery relies heavily on
human expertise to our knowledge so far no experiments have

been conducted to better understand manual trace recovery
for large-scale software systems.

Nonetheless, research on traceability has progressed signif-
icantly and researchers have been developing automated ap-
proaches that go far beyond simple “recording and replaying”
of trace links (which is still the level of support in many com-
mercial tools). Approaches exist today that support recovery
of different types of trace links such as code and models [18–
20], code and documentation [21], architecture and test cases
[22], architecture and code [23], or features and code [24].
Researchers have proposed various techniques and heuristics
to support the automation of trace recovery. Examples include
event-based approaches [25], information retrieval [12, 13],
feature location techniques [15], process-oriented approaches
[26], scenario-based techniques [14], or rule-based methods
[16]. Although advances have been made to automatically
recover links, trace acquisition remains a human-intensive
activity with high initial cost as reported in case studies on
industrial processes and traceability experiences [2, 4, 27–29].

Researchers have also conducted case studies and ex-
periments to determine the effectiveness of traceability ap-
proaches. For instance, Hayes et al. report on a case study
that investigates the effectiveness of information retrieval
techniques to create trace links between high-level and low-
level requirements [30]. Bianchi et al. present an exploratory
case study evaluating the relationship between the granularity
of the traceability model adopted and the effectiveness of
the maintenance process [31]. De Lucia et al. describe a
controlled experiment [10] on the combined use of traceabil-
ity links with information retrieval techniques to give hints
regarding the similarity of source code elements.

Despite these advances and available heuristics, capturing
trace links remains difficult and unreliable. A better under-
standing of how people recover trace links is essential for
researchers aiming at improving their existing techniques. It
is also needed by tool developers providing trace recovery
features and by practitioners facing the challenges of planning
and managing trace recovery activities in industrial practice.

All current automated approaches require some human
intervention. Our studies aim at a better assessment on the
cost of this human intervention.

III. RESEARCH QUESTIONS

Our research is meant to provide data on effort and quality
of trace recovery by using subjects unfamiliar with a system
and with no meaningful automation aside of basic reading
technologies. We explore five research questions we defined
based on the challenges reported in the traceability research
literature, research issues discussed at the International Sym-
posium on Grand Challenges in Traceability (GCT’07), as
well as our own industrial experiences:

RQ 1. Does code complexity impact trace recovery effort?
We explored whether the amount of code engineers have to
read and the code’s complexity have an impact on trace effort.
Our basic assumption was that code of higher complexity
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is harder to understand and we expect that code complexity
means higher effort. We investigated this research question in
experiment 1.

RQ 2. Does code complexity impact the correctness of
trace links? We investigated to what degree the size and
complexity of the source code engineers have to read impacts
trace quality. Our expectation is that larger size and higher
complexity negatively impact trace link quality. We investi-
gated this research question in experiment 1.

RQ 3. What is the impact of trace granularity on effort?
Maximizing the benefits of traceability techniques by ap-
plying them in different forms or combinations is a hard
research challenge [9]. In earlier research we explored the
trade-off between trace granularity and quality [11, 32]. While
fine-grained traces (e.g., requirements to methods instead of
requirements to classes) increase the possibilities for trace uti-
lization, in many cases their creation is more costly. Based on
these earlier results we predict that fine-grained traces require
more effort. We investigated this issue in experiment 2.

RQ 4. What is the impact of trace granularity on quality?
One could assume that fine grained traces are more precise
and correct as engineers must investigate each method indi-
vidually leading to a deeper understanding of a class. Our
expectation was that finer granularity positively impacts trace
recovery quality. We investigated this research question in
experiment 2.

RQ 5. Does the correctness of trace links increase with
higher tracing effort? We expect that more effort implies
better quality which reflects the general belief that people will
achieve higher quality if they devote more time. This research
question was investigated in experiment 1.

IV. RESEARCH DESIGN

We explored the five research questions on the two open
source systems GanttProject (GP) and ReactOS (RO) as
shown in Table I.

A. Case Study Systems

GanttProject (GP) http://ganttproject.biz/ This open
source system provides features for project planning and
tracking. Users can visualize task dependencies using Gantt
charts and compute the start and finish dates of projects. GP
supports basic analyses such as critical path computations for
identifying tasks delaying the entire project. It also allows the
planning of human resources and their degree of involvement
in different tasks to optimize staffing. The system was selected
as the subjects already had basic skills in project management
techniques. Also, GP is easy to use and its key features are
explained in existing lectures on project management. The
system is quite large, consisting of 41 KLOC Java code
distributed in 516 classes and 3689 methods. The part of the
system selected for the study consisted of 85 classes and 788
methods.

ReactOS (RO) http://www.reactos.org/ RO is an open
source implementation of the Windows XP OS. RO aims at

Table I
KEY CHARACTERISTICS OF EXPERIMENTS.

Experiment 1 Experiment 2
(Classes) (Methods)

GP RO GP RO
Subjects 20 20 48 12
Requirements 17 16 17 16
System size 516 245 3,689 3,490
Selected code elements 85 123 788 544
Possible votes of assignment 1,445 1,968 13,396 8,704
Avg. votes cast per subject 748 1,026 1,792 1,282
Votes cast by all subjects 14,966 20,510 86,023 15,379

trace votes 1,068 1,969 3,421 1,104
no trace votes 13,898 18,541 82,602 14,275

Vote redundancy 10.4 10.4 6.4 1.8
% completed (assignment) 51.8% 52.1% 13.4% 14.7%
% completed (entire system) 5.0% 5.0% 2.1% 8.3%

compatibility to XP applications and device drivers. Further-
more, RO provides a graphical user interface that is highly
similar to Windows XP (e.g., a start menu, a taskbar, an ex-
plorer for performing typical file system operations). Again,
the subjects were familiar with the basic functionality of RO
due its similarities to the Windows OS. The system is also
quite large, consisting of 34 KLOC C++ code distributed in
245 classes (files) and 3490 methods. The part selected for
the study consists of 123 classes and 544 methods.

The large size, complexity, and poor documentation made
trace recovery a non-trivial exercise. The mnemonic value
of variable and method names was quite good which made
it fairly intuitive in many cases to guess a trace link. How-
ever, these systems hardly contained any comments or other
linguistic cues in the code. Subjects investigated parts of the
system only and thus were unable even during the experiment
to gain deeper knowledge about the system.

B. Experiment Process

We used a series of measures to gauge correctness and com-
pleteness. In particular, we used a 3-tiered research design
to assess trace link quality: (i) Multiple subjects recovered
the traces of any given piece of code to ensure vote redun-
dancy. (ii) We conducted trace recovery independently at two
different levels of granularity: In experiment 1, 20 subjects
for GP and 20 more subjects of RO investigated how the
requirements traced to classes (class traces). In experiment 2,
48 subjects for GP and 12 more subjects RO investigated how
the requirements traced to methods (method traces). (iii) We
validated the correctness of the trace links cast by the subjects
with the help of two key developers of GP and RO. Both
had significantly contributed to development and were highly
familiar with the code.

The subjects participating in the two experiments were
100 master-level students from Johannes Kepler University
Linz and Vienna University of Technology. All subjects were
trained in trace recovery and relevant features of GP and
RO. As discussed above, our experiments focused on subjects
without a-priori system knowledge. For this purpose the cho-
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Figure 1. Trace Capture Tool.

sen subjects were an ideal choice since roughly half of them
had between 2-10 years of experience and the other half had
little to no industrial experience. All subjects were unfamiliar
with the source code or implementation details to fit the scope
of this study.

We did not know how many classes or methods a subject
could recover in a reasonable amount of time as no such
benchmark existed. We therefore decided on evaluating only a
selected subset of each system and its requirements as shown
in Table I. We focused on 17 (GP) / 16 (RO) requirements
covering the core functionality of the systems. The require-
ments were selected randomly – in part together with the
developers. Figure 1 shows some of the requirements. The
classes were selected based on these requirements. Since
the larger majority of classes did not implement any of the
selected requirements, irrelevant classes were eliminated with
the help of developers and through testing and profiling
[14, 33]. While all selected classes were thus relevant to at
least one requirement, trace links were still rare. While our
selection focused on a subset of requirements and classes,
we expected that the average number of requirements per
class should remain reasonably small even in larger systems
with more requirements. Our experiment setup was thus quite
realistic in terms of its low ratio of traces vs. no traces.

In the first exploratory experiment, 20 subjects investigated
the trace links among the requirements and the 85 selected
Java (GP) classes, another 20 subjects worked on the 123 C++
(RO) classes. In the second experiment the remaining subjects
investigated the trace links among those requirements and the
788 (GP) / 544 (RO) methods.

The subjects used a simple Trace Capture tool for entering
trace links (Figure 1). The tool was purely used for data
collection and did not automate trace recovery. For each
subject, the tool provided a randomized list of classes or
methods (thus presenting a different subset of code to each
subject). The tool allowed the subjects to view the source code

of any class or method and provided basic navigation features.
Most significantly, the tool revealed the callers and callees of
classes and methods. The subjects could navigate and view
the source code; and the tool also provided information on
parent and child classes. This information was determined
through prior static and dynamic analysis of the source code.
Initially, all requirement-to-code traces were set as undefined.
The subjects could change this setting to trace or no trace.
We also advised the subjects to only vote in cases of certainty
or otherwise to bypass a vote by leaving it undefined. The
tool determined trace recovery effort devoted to different code
elements by measuring the time span between selecting the
code element, voting on its traceability, and selecting the next
one. If a subject returned to a piece of code at a later time then
the additional time spent was added.

C. Definitions for Data Analyses

Recovering the trace links for the 85 GP classes and 17
requirements in experiment 1 requires 17x85=1,445 trace/no
trace votes for completion. For the 788 GP methods in exper-
iment 2, 17x788=13,396 votes are necessary. In the limited
time available, each subject managed to cast a portion of these
votes only. For instance, the 20 GP subjects recovering class
traces combined cast 14,966 votes with a redundancy of 10.4
votes per requirement and class on average. The remaining
48 subjects cast 86,023 method votes with a redundancy of
6.4 votes per requirement and method. The low redundancy
can be explained by the experiment duration of 90 minutes
per subject. Even the subset of the system was too large
for a subject to cover it entirely. A redundancy of 6 votes
per class for 48 subjects (all subjects were given the same
classes but in different order) implies that each subject was
able to complete on average 13.4% of the required 13,396
votes needed for the 85 classes in the experiment (or 2.1% of
the entire 3689 methods). This was intended as we wanted to
avoid learning effects of subjects gaining sufficient familiarity
with the system during the experiment.

Most votes were no trace votes (94%); the remaining
6% were trace votes (we ignored votes that subjects left at
undefined). The overwhelming vote in favor of no trace was
not surprising given that most classes implement few require-
ments only. Trace links are thus expected to be rare compared
to no traces. For traceability, however, both the effort of traces
and no traces are relevant. During trace recovery, all classes
of a system must be investigated and thus the combined
effort of all classes is important (whether it traces to a given
requirement or it does not). It would thus be invalid to discard
no trace votes from this study.

The subjects exploring the RO traces also managed to cast
a portion of all trace votes of the system in the given time.
The 20 subjects who recovered traces to the C++ classes
cast 20,510 trace/no trace votes with a redundancy of 10.4
votes per requirement and class. The remaining 12 subject
cast 15,379 votes with a redundancy of about two votes on a
random subset per class. Even though the RO system received
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fewer votes on average, the large number of code elements
covered allowed drawing statistically significant conclusions.

Trace correctness in our analyses is measured through the
consensus between the trace links captured by the subjects
and trace links produced by the developers (benchmark). To
compare effort and quality of class and method traces in
experiment 2, we combined the method traces to aggregated
classes using a simple criterion: if at least one of the methods
of the class traced to a requirement then the class as a whole
was considered to trace to that requirement; otherwise there
was no trace.

D. Experiment Data Quality

To control the effort spent, we conducted both exploratory
experiments in a controlled environment and supervised the
subjects. The sessions were limited to 90 minutes per subject.
As discussed above we randomly shuffled the ordering of
classes and methods for each subject to ensure that classes and
methods had a roughly equal likelihood of being investigated
(i.e., this was important since we presumed that subjects
would be unable to complete the experiment in the limited
time available). Subjects were instructed to emphasize quality
over quantity when capturing links. Also, subjects were told
to cast trace and no trace votes in case of confidence only.
They could choose to skip votes and leave them undefined in
case of doubt. However, only 5% of the trace links viewed
by the subjects in the tool were skipped and left undefined
(all view events were recorded in the tool). Despite the lack
of system knowledge, subjects thus seemed to be confident in
their votes in most cases.

However, did this confidence also lead to good trace link
quality? We compared the data gathered by the subjects to
the benchmark provided by the developers: 89% of the GP
and RO class and method traces were confirmed by the
benchmark. However, the no trace votes were more correct
than the trace votes which averaged to 49% (depending on
experience). It thus appears to be often easier to rule out a
trace link while there is a gray zone where trace recovery
is hard. The results show that a very high percentage of
trace links discovered by the subjects was confirmed by the
benchmark data although the subjects were unfamiliar with
the code. Our analyses also confirmed that subjects could not
have achieved such a high success rate by random voting.

V. EXPERIMENT 1: CLASS TRACES

In the first experiment, 20 subjects investigated the trace
links among 17 requirements and the 85 Java classes of GP.
Another 20 subjects investigated the trace links among 16
requirements and the 123 C++ classes of RO. The subjects
cast 14,966 trace/no trace votes for the GP class traces and
20,510 trace/no trace votes for the RO class traces. Since these
class votes were roughly evenly distributed among all classes,
we ended up with 10.4 votes (for GP and RO) per requirement
and class.

A. Code complexity and effort (RQ1)

Research question 1 explored whether the amount of code
engineers have to read and the code’s complexity have an
impact on trace effort. Trace recovery requires subjects to
read source code. It is thus intuitive to assume that larger code
size (LOC) and higher code complexity (measured using Mc-
Cabe’s cyclomatic complexity [34]) increase trace recovery
effort. We indeed found a correlation between LOC and effort
(Figure 2 shows the data of GP and RO class traces). There
is a moderate correlation between size of classes and effort
(Figure 2) with Spearman’s rho being 0.508 for GP (p-value
<0.00001) and 0.631 for RO (p-value <0.00001).

We split the classes into four categories: 0–30 LOC, 30–
100 LOC, 100–300, and >300 LOC (the bucket sizes are
evenly distributed in the logarithmic scale used in the figure).
Figure 2 shows the median effort for each category. Inter-
estingly, GP effort per class was slightly higher compared
to RO effort which implies that the GP classes were harder
to assess than RO classes. This might be an effect of the
application domain or the understandability of the code. We
also measured the impact of McCabe’s cyclomatic complexity
on effort and observed the same effect with Spearman’s rho
being 0.387 for GP (p-value 0.00013). Overall, the results
show that larger classes are more expensive to trace than
smaller classes but at decreasing marginal costs (a 10-fold
LOC increase corresponds roughly to a 2-fold effort increase).

Figure 2. Moderate correlation between code size and effort for GP/RO.

B. Code complexity and quality (RQ2)

It is also intuitive to believe that trace link quality de-
creases with higher code complexity – the larger and the more
complex a class, the more likely errors should occur. We
assessed the impact of code size and McCabe’s cyclomatic
complexity on trace link quality (measured by the number
of conflicts with developers). Given the above observations,
we expected trace recovery to be easier for smaller and less
complex classes.

Figure 3 shows however that there is no correlation between
the size of classes and the average number of conflicts for GP
(rho 0.063). There is also no correlation between McCabe’s
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Figure 3. Code size is not correlated with trace quality.

cyclomatic complexity and the number of conflicts for GP
with Spearman’s rho being -0.01 for GP (p-value 0.5379).
There is however a weak correlation between the size of
classes and the average number of conflicts for RO (rho
0.290, p-value 0.00057). While LOC and McCabe do not
consider more complex features of source code (inheritance,
cohesion and coupling), this observation nonetheless suggests
that certain syntactic features of source code do not much
affect trace link quality. Only the meaning and usage seems
relevant.

VI. EXPERIMENT 2: METHOD TRACES

In experiment 2 we gathered data on trace recovery be-
tween requirements and methods. The purpose was to better
understand the impact of trace granularity on trace effort
by comparing data with results from experiment 1 (RQ3).
We also aimed at deeper analyses regarding trace granularity
and quality (RQ4). In experiment 2, 48 subjects investigated
the trace links among the GP requirements and the 788 GP
methods. Another 12 subjects investigated the trace links
among the RO requirements and the 544 RO methods. Con-
sidering GP we required more subjects to achieve the same
code coverage as in experiment 1, mainly because assessing
trace links at a finer level of granularity increases the number
of code elements (788 methods versus 85 classes). The 48
subjects cast 86,023 trace/no trace votes for method traces.
For the 788 methods, the 48 subjects produced a redundancy
of roughly 6 votes per requirement and method. These votes
were aggregated to make them comparable to the class traces.
In addition, for RO, we used 12 subjects to identify trace links
between the 544 RO methods and the 16 requirements. They
cast 15,379 trace/no trace votes with a coverage of roughly 2
votes per requirement and method. This lower redundancy is
compensated by a larger number of methods.

A. Trace granularity and Effort (RQ3)

Regarding this research question, we tried to understand
the impact of trace granularity on effort. We expected that
fine-grained trace recovery requires more effort since methods
must be investigated individually.

Figure 4. Method votes required higher effort than class votes. The ratio
is shown for GP and RO and increases for larger classes. The dotted line
describes the situation of equal effort between class and method votes.

Figure 4 shows a ratio expressing the relation of the effort
for recovering method traces vs. recovering class traces. If the
sum of the individual method efforts of a class exceeds the
class effort as a whole then it is above the nominal line (red,
dashed line), otherwise it is below (equal effort yields a ratio
of 1). There is a moderate correlation between the size and the
method-to-class effort ratio (Figure 4) for both GP (rho 0.288,
p-value 0.0038) and RO (rho 0.366, p-value 0.00001). There
is also a moderate correlation between McCabe’s cyclomatic
complexity and the number of conflicts for GP (rho 0.272, p-
value 0.00578). This confirms our expectation. However, it is
surprising that the increase for class traces was not as strong
as the increase for method traces. This observation suggests
that class trace recovery is easier because understanding the
purpose of a class as a whole is easier than understanding the
purposes of each of its methods combined. It also appears that
subjects do not need to investigate all methods of a class to
establish trace links at the granularity of classes, which might
explain the significantly weaker increase of class trace link
effort compared to method trace link effort.

B. Trace Granularity and Quality (RQ4)

We expected that fine-grained trace recovery requires more
effort but at the same time produces trace links of better
quality due to the higher work precision needed. We thus
assessed the impact of code size and complexity on trace
link quality (measured by the number of errors compared
to developer benchmark). Given the above observations, we
already showed that trace recovery was not easier for smaller
and less complex trace links at the granularity of classes.

However, there were some disagreements between classes
and method votes. The above discussion merely shows that
code size and complexity do not account for these differences.
Of the 94 (GP) / 45 (RO) class traces and 103 (GP) / 38 (RO)
aggregated method traces, class traces and method traces
agreed in 41 (GP) / 25 (RO) cases. 46 (GP) / 17 (RO) class
traces were not found at the granularity of methods while
55 (GP) / 10 (RO) aggregated method traces were not found
at the granularity of classes. For better understanding agree-
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Table II
COMPARISON OF CLASS AND METHOD TRACE LINKS WITH THE

DEVELOPER BENCHMARK.

Class
Group

Methods
Group

Developer
Benchmark

GP RO

trace trace confirm 41 25
reject 7 3

no trace no trace confirm 1,036 396
reject 56 14

no trace trace with class 27 5
with method 28 5

trace no trace with class 23 15
with method 23 2

ments and disagreements between class traces and method
traces, we compared the trace votes of the subjects with the
benchmark of the two developers. We expected that class
traces would be of lower quality and consequently most of
these missing or extra traces should be the result of incorrect
class traces (and not incorrect method traces).

Table II summarizes our findings for both systems. We
see, for example, in row 4 that of the traces found by the
class group but not found at the granularity of methods, the
developer agreed with the class group in 23 cases and with the
methods group in 23 cases. In the case of the traces found by
the method group but not at the granularity of classes (row 3),
the assessment group agreed with the class group in 27 cases
and the method group in 28 cases. The data gathered on RO
was very similar (see right column). Indeed, our expectation
was wrong and subjects working on methods traces did not
produce better quality traces than subjects working on class
traces. We thus conclude that method traces are not of better
quality than class traces – despite 3-6 times higher effort.

VII. TRACE EFFORT AND QUALITY (RQ5)

Research question 5 investigates how trace recovery effort
is correlated with trace correctness. It is a general truism
that effort and quality are positively correlated. But, as was
already revealed in the comparison of class vs. method traces,
finer-grained traces require 3-6 times more effort to produce
without a correlation between finer and coarser-grained traces
and trace quality. This suggests that from the perspective of
trace quality there is no benefit in increasing effort by asking
subjects to investigate classes in more detail. One might argue
that recovering method traces and class traces is somewhat
different. We thus also investigated the role of effort on class
traces only. We investigated the effort of different subjects
for all classes and surprisingly observed that the subjects who
spent more time on a class were also more likely to recover
incorrect trace links.

To illustrate this, we divided all classes into four equally
sized buckets according to the effort the subjects spent to cast
their votes. Figure 5 shows boxplots of the four buckets based
on the average number of conflicts of the trace votes with the
benchmark data. Surprisingly, the more effort subjects spent
on a given class the more likely their votes were in conflict

Figure 5. More effort spent on a class resulted in more conflicts. The
right bucket contains conflicts of the fastest subjects for each class.

with the benchmark. The rightmost bucket, for example,
contains the conflicts of classes where the subjects spent the
most effort. This bucket with the slowest classes contains
more conflicts than the bucket with the fastest classes. Trace
links cast on RO produced fewer conflicts than trace votes
casted on GP. Nevertheless, in both cases a higher effort spent
on a class resulted in poorer quality.

This observation is not immediately intuitive. Our expla-
nation is that easy trace links required little effort and could
be produced with high correctness. However, hard trace links
required more effort and were of lower quality due to their
complexity despite the extra effort. Note that subjects decided
freely how much time they would spend on a class. This
data thus does not yield insights into whether the quality
would improve if the subjects were forced to spend more time.
However, it should be noted that this aspect was investigated
with the class vs. method traces where we forced subjects to
investigate all methods individually which yielded a higher
effort cost but no quality improvements.

Regarding RQ5 we conclude that more effort does not yield
better trace quality – neither by changing granularity nor
through longer evaluation times. Trace recovery is fast and
accurate when the assigned classes are easy to comprehend.
Otherwise, it is hard and inaccurate despite the extra effort
invested. Asking subjects to simply spend more time does not
obviously benefit trace quality. This suggests that trace quality
should be improved by means other than effort – perhaps
automation or code familiarity.

VIII. THREATS TO VALIDITY

As any empirical study, our exploratory experiments ex-
hibit a number of threats to validity [35].
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A threat to construct validity – are we measuring what we
mean to measure – is the potential bias caused by the systems
selected for the experiment meaning that our experiment may
underrepresent the construct. However, we used two fairly
large software systems developed by multiple people and
with different implementation languages (Java and C++). Fur-
thermore, both systems have gone through multiple revision
cycles (thus exhibiting aging effects). We therefore believe
that they represent typical systems found in industry that are
no longer understood by their developers.

A threat to internal validity – are the results due solely
to our manipulations – is selection, in particular the as-
signments of code elements to particular subjects. We used
randomization and changed the ordering of code elements
to avoid systematic bias from selection. A second threat to
internal validity is process conformance. However, the trace
capture tool and the supervision enabled us to easily ensure
process conformance. Data consistency was ensured during
the experiment due to tool support. Supervisors collected the
trace and effort log data immediately after each step to avoid
manipulation. Additionally, we optimized the measurement of
effort by fine-grained tracking of user actions.

We are also able to rule out random subject voting as a
significant threat to validity. The subjects cast 50% correct
trace votes and 95% correct no trace votes. Both trace and
no trace votes must be considered together. With random
guessing, one would cast 50% correct traces (as the students
did) but then also only cast 50% correct no traces (while the
students cast 95% correct no traces). By simply voting no
trace in all cases, one would cast 95% correct no traces (as the
students did) but 0% correct trace votes (while the students
cast 50% correct trace votes). The students however found
significant numbers of correct traces and no traces. The results
in this study are thus the result of ability – not luck.

Moreover, one might expect a startup phase where trace
recovery is slow and a fatigue effect setting in after prolonged
trace recovery. E.g., other researchers have suggested that
trace recovery should be done incrementally, in short but
frequent sessions [36]. We found that subjects worked near
optimal after only 20 minutes. Our findings thus were not
biased much by the experiment setup (data excluded for
brevity).

Regarding conclusion validity the high number of
classes/methods investigated and the large number of subjects
allowed us to demonstrate statistical significance of the results
in both experiments.

With respect to external validity – can we generalize the
results – we took two real-world, large systems representing
realistic application contexts. The size of the systems is
similar to related experiments [10] but not particularly high
compared to documents in industrial settings. For instance, we
took 85 classes representative of GP as whole. The question
is whether these classes are representative of Java classes
in general? The selection of the 85 from 450 classes was

Figure 6. Performance of subjects.

based on static and dynamic analyses of 17 randomly selected
requirements so we can assume a reasonably random distribu-
tion of hard and easy classes.

In many industrial settings people have no intimate system
knowledge during trace recovery. The experiments thus inves-
tigated whether subjects unfamiliar with the source code can
successfully perform trace tasks. The subjects were students
participating in classes on requirements engineering. It has
been pointed out that students may not be representative of
real developers. However, for the scope of our study the
selection of students as subjects does not represent a threat
to validity as they are representative of the group of people
joining companies and needing to familiarize themselves with
source code. The students certainly had the necessary techni-
cal skills to perform basic trace recovery tasks as the quality
of their data shows. Also, Höst et al. observe no significant
differences between students and professionals for small tasks
of judgment [37], a condition that is met in our case. More-
over, to assess validity of the trace links cast, key developers
of the open source systems developed a benchmark. Trace
links of subjects and developers overlap – another suggestion
that the subjects performed well. The high correctness of the
trace links (compared to benchmark data) shows that students
certainly had the technical necessary skills to perform the
trace recovery task.

Figure 6 shows that subjects performed very well – recover-
ing between 80-95% correct trace/no trace votes. However, as
was discussed earlier, this high quality is slightly misleading
as the number of no trace votes dwarves the trace votes which
were only 49% correct for RO and merely 37% correct for
GP (both averages across all subjects). However, this quality
difference is not surprising and the overall 80-95% quality is
quite outstanding.

Finally, many subjects are already professional software
developers with several years of industrial experience. A
detailed analysis of the subjects is shown in Figure 7. 55% of
subjects had less than 2 years of industrial experience, 24%
of subjects had 2-4 years of industrial experience, and 21% of
subjects had more than 4 years of industrial experience.

The lower red line in the left figure shows that experienced
subjects outperformed novices with respect to trace correct-
ness, however, at the expense of trace effort (green line in
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Figure 7. Experienced subjects perform better but need longer.

the right figure). We can report positive correlation between
the experience of subjects and the correctness of trace links
was significant (rho 0.313, p-value 0.0217). There is however
no correlation between the experience of subjects and the
correctness of all trace links. Experience thus seems to matter
little during trace recovery: another indication that students
are well suited as subjects.

IX. SUMMARY AND DISCUSSION

We presented the results of two exploratory experiments
on recovering trace links between requirements and code.
We believe that our exploratory studies are valuable as they
succeeded in confirming and dismissing some existing beliefs
and in providing a foundation for assessing the cost of manual
trace recovery under ”worst case” assumptions. The latter is
important for assessing the cost-effectiveness of any technol-
ogy that relies on traceability.

We intentionally selected subjects that were unfamiliar
with the systems, supplied no automated support for trace re-
covery, and provided no documentation for the task at hand –
with the intent of creating a ”worst case” environment. During
the course of the experiments, individual subjects investigated
a small set of classes only which did not allow them to gain
a reasonable understanding of the system. Documentation
of the source code was non-existent with the exception of
very few comments. This is largely consistent with industrial
settings where the original developers of a system are either
no longer available or are no longer intimately familiar with
the very details of the system [5, 10]. Despite these constraints
trace quality was surprisingly high (with no trace links easier
to determine correctly compared to trace links).

Regarding research question RQ1, the data indicates that
increased code complexity was associated with an increased
trace recovery effort. This data is not a contradiction to our
observations in RQ5. Larger classes do need more time to
recover than smaller classes. However, for any given class,
more effort does not mean better quality. Regarding research
question RQ2 the results of our analyses reveal that there is no
correlation between the code size/complexity and the quality
of the trace links. This suggests that quality of trace recovery
is not determined by syntactic facts but rather semantic facts
such as the meaning of identifiers or the context of code frag-

ments. In future work we will analyze the navigation behavior
of subjects to find out whether more than local knowledge is
required in more complex cases. Regarding research question
RQ3 our experiment shows that tracing requirements to meth-
ods required 3-6 times more effort than tracing requirements
to classes. However, traces at the granularity of methods have
no advantage over traces on granularity of classes in terms of
trace quality (RQ4). We got surprising results regarding RQ5
as a higher tracing effort does not imply better quality. Data
indicates that trace link recovery is either fast and accurate or
slow and inaccurate.

X. CONCLUSIONS

Automation is critical to support trace recovery but still
in its infancy. Existing commercial tools help recording and
managing traces but they don’t help recover them. We hope
that the knowledge gained in this study can help researchers
and tool builders to automate trace recovery. Our work was
also motivated by the fact that there exists no large system
with known trace links for researching the problem of trace
recovery. Our data provides a meaningful benchmark that can
be used and further refined by other researchers in the com-
munity who need to assess the effectiveness and efficiency of
automated traceability approaches.

For practitioners, our study reveals interesting facts about
the cost and quality of trace capture in the ”worst case”
scenario of unfamiliar subjects without tool support: Trace
recovery requires on average 1-2 minutes depending on code
size. The quality of trace recovery favors no trace votes over
trace votes. It appears to be much easier to correctly eliminate
a class from tracing to a requirement than including it. Yet,
we could not find a correlation between code size and quality.
Trace recovery of method traces costs between 3-6 times as
much as class traces. Most interesting, however, the quality of
method traces is no better than that of class traces despite the
higher effort.

Future work will investigate more precisely the relationship
between trace cost/quality to code structure and complexity
(e.g., coupling and cohesion). Furthermore, we plan on inves-
tigating separately the cost and quality implications for trace
and no trace votes.
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